If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-4h=96
We move all terms to the left:
h^2-4h-(96)=0
a = 1; b = -4; c = -96;
Δ = b2-4ac
Δ = -42-4·1·(-96)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-20}{2*1}=\frac{-16}{2} =-8 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+20}{2*1}=\frac{24}{2} =12 $
| 95=14+9w | | 3(6 | | -1/2*12v-20+4=-12-8v | | 5y+40+1+1=0 | | -1/2*(12v-20)+4=-12-8v | | 1-4w=-31 | | 4x+3=2(2x-6) | | -1/2(12v-20+4=-12-8v) | | 6z+4-3z=37 | | d/6=-9.5 | | d/2-4=-5 | | n+511/2=10 | | n/3+21=25 | | 150-7.5x=120.50 | | x(5−2)=4x−x | | 9f-23=49 | | 7=c+2 | | −8+x=48 | | p-92=6 | | 5x+3=-3x+17 | | /4x+1=13 | | 5b-3=3-b | | (3x-4)=(2x+10) | | H(t)=-16^2+80t+3 | | 10.5x=26 | | 16n+–15n=8 | | 101/2x=26 | | 9x-4=-59 | | 7m-3m=40,m= | | 16-4m=+6 | | {X+y)^2=289.X^2+y^2=169 | | 10x-3(2x-4=8 |